Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7352, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990021

RESUMO

The deep pelagic ocean is increasingly subjected to human-induced environmental change. While pelagic animals provide important ecosystem functions including climate regulation, species-specific responses to stressors remain poorly documented. Here, we investigate the effects of simulated ocean warming and sediment plumes on the cosmopolitan deep-sea jellyfish Periphylla periphylla, combining insights gained from physiology, gene expression and changes in associated microbiota. Metabolic demand was elevated following a 4 °C rise in temperature, promoting genes related to innate immunity but suppressing aerobic respiration. Suspended sediment plumes provoked the most acute and energetically costly response through the production of excess mucus (at ≥17 mg L-1), while inducing genes related to aerobic respiration and wound repair (at ≥167 mg L-1). Microbial symbionts appeared to be unaffected by both stressors, with mucus production maintaining microbial community composition. If these responses are representative for other gelatinous fauna, an abundant component of pelagic ecosystems, the effects of planned exploitation of seafloor resources may impair deep pelagic biodiversity and ecosystem functioning.


Assuntos
Ecossistema , Cifozoários , Animais , Humanos , Biodiversidade , Temperatura , Mudança Climática , Oceanos e Mares
2.
Sci Rep ; 12(1): 8282, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585085

RESUMO

Gill parasites of coleoid cephalopods are frequently observed during remotely operated vehicle (ROV) dives in the Monterey Submarine Canyon. However, little knowledge exists on the identity of the parasite species or their effects on the cephalopod community. With the help of ROV-collected specimens and in situ footage from the past 27 years, we report on their identity, prevalence and potential infection strategy. Gill parasites were genetically and morphologically identified from collected specimens of Chiroteuthis calyx, Vampyroteuthis infernalis and Gonatus spp. In situ prevalence was estimated from video footage for C. calyx, Galiteuthis spp., Taonius spp. and Japetella diaphana, enabled by their transparent mantle tissue. The most common parasite was identified as Hochbergia cf. moroteuthensis, a protist of unresolved taxonomic ranking. We provide the first molecular data for this parasite and show a sister group relationship to the dinoflagellate genus Oodinium. Hochbergia cf. moroteuthensis was most commonly observed in adult individuals of all species and was sighted year round over the analyzed time period. In situ prevalence was highest in C. calyx (75%), followed by Galiteuthis spp. (29%), Taonius spp. (27%) and J. diaphana (7%). A second parasite, not seen on the in situ footage, but occurring within the gills of Gonatus berryi and Vampyroteuthis infernalis, could not be found in the literature or be identified through DNA barcoding. The need for further investigation is highlighted, making this study a starting point for unravelling ecological implications of the cephalopod-gill-parasite system in deep pelagic waters.


Assuntos
Dinoflagelados , Octopodiformes , Parasitos , Animais , Decapodiformes , Brânquias , Humanos
3.
Sci Rep ; 11(1): 9231, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927222

RESUMO

Gelatinous zooplankton are increasingly acknowledged to contribute significantly to the carbon cycle worldwide, yet many taxa within this diverse group remain poorly studied. Here, we investigate the pelagic tunicate Pyrosoma atlanticum in the waters surrounding the Cabo Verde Archipelago. By using a combination of pelagic and benthic in situ observations, sampling, and molecular genetic analyses (barcoding, eDNA), we reveal that: P. atlanticum abundance is most likely driven by local island-induced productivity, that it substantially contributes to the organic carbon export flux and is part of a diverse range of biological interactions. Downward migrating pyrosomes actively transported an estimated 13% of their fecal pellets below the mixed layer, equaling a carbon flux of 1.96-64.55 mg C m-2 day-1. We show that analysis of eDNA can detect pyrosome material beyond their migration range, suggesting that pyrosomes have ecological impacts below the upper water column. Moribund P. atlanticum colonies contributed an average of 15.09 ± 17.89 (s.d.) mg C m-2 to the carbon flux reaching the island benthic slopes. Our pelagic in situ observations further show that P. atlanticum formed an abundant substrate in the water column (reaching up to 0.28 m2 substrate area per m2), with animals using pyrosomes for settlement, as a shelter and/or a food source. In total, twelve taxa from four phyla were observed to interact with pyrosomes in the midwater and on the benthos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...